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Abstract— We consider a method of characterizing cost functions
underlying legged locomotion. We use a trajectory optimization
approach, allowing a separation of the constraints associated with
walking, which walkers must follow, from various proposed cost
components, which reflect preference. Here we present results on
synthetic walking data, where we generate stepping motions using
known cost functions, and use an iterative trajectory optimization
process which requires only a single demonstrated optimal trial to
infer the cost function weightings that were used to generate it.

I. INTRODUCTION

While walking is a complex whole-body task, some underlying
costs govern overall gait. Optimization approaches to under-
standing behavior assume that locomotion arises from trying
to achieve a certain goal (forward motion) while minimizing
some measure of cost. A range of potential costs of human
motion have been propose, including metabolic cost (e.g. [1]).
This may include costs for using muscle [2] to produce work
or force. Kinematic jerk has also been proposed as a cost that
humans tend to minimize, and may be related to costs for muscle
activation. Stability characteristics may be another consideration.
A combination of cost terms is generally beneficial for predicting
and describing natural motion. In this work, we will consider
locomotion control as an optimization problem with the goal
of characterizing the underlying cost function used to generate
the motion. Given a demonstrated behavior which we consider
optimal, we will estimate a cost function that may have given rise
to that behavior. This process, known as inverse optimal control,
has been used to study human locomotion in terms of overall path
characteristics [3]. We use an inverse optimal control framework,
treating the given task (taking a step), as an optimization problem
minimizing some combination of costs while satisfying walking
constraints, defined by a simple physical model of walking.
We plan to apply this method to, for example, human subjects
experiments where investigators design experimental conditions
hypothesized to re-weight the underlying costs (e.g. testing if a
condition with perturbations increased a subject’s preference for
stable motions).

II. OUR APPROACH
To test our overall approach for performing inverse optimal

control we test our ability to characterize a known cost function
used in trajectory optimization of a simple model of walking.
While various approaches have been proposed for inverse op-
timal control [IOC examples, pi2, that optimization paper], an
important consideration in walking is the handling of active
physical constraints (e.g. unilateral ground contact). Additional
constraints may be assumed based on experimental conditions,
such as by controlling the speed of a treadmill on which a
subject walks. Practically, we wish to separate, where possible,
aspects of the behavior are determined by physical constraints
from aspects determined by subject preference. We therefore
consider a general trajectory optimization method for inverse
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optimal control, incorporating both costs and hard constraints.
In this work, we first show the ability of an inverse optimal
control method to characterize a cost function of walking under
ideal conditions. We generate an optimal motion using a simple
trajectory optimization procedure, and then attempt to rediscover
the cost weights that were used in the optimization, using the
single demonstrated trajectory (Figure 1).

A. Trajectory Optimization

We consider a linear inverted pendulum model stepping to
a given point, with constrained step timing. The states in the
optimization (x) procedure include the trajectories of the center
of mass (COM), center of pressure (COP), and feet. These trajec-
tories are discretized throughout the step, consisting of a stance
phase, a left foot swing phase, and a final double support phase (1
second per phase). The cost function c(x) = wT · φ(x) consists
of a weighted (with weights w∗) combination of squared cost
features (φ(x)): foot placement error, COP acceleration, swing
foot acceleration (assuming a trivial massless point foot model).
Constraints include the model physics, such as the integrated
equations of motion and a convex hull base of support constraint
for the COP location. For this task we also constrain the final
COM position to be directly over the final swing foot location.
An example optimal trajectory (x∗) is found for a desired
step forward of 0.3m. This problem is solved using a general
sequential quadratic programming implementation, IPOPT.

B. Inverse Optimal Control

The inverse optimal control method consists of generating a
set of suboptimal feasible trajectories (X−) around the optimal
demonstration, and finding cost weights (w) which ensure the
overall cost function is lower for the demonstrated trajectory than
for any of these suboptimal trajectories. In particular, we first
sample N normally distributed trajectories around x∗, xri , i ∈
[1 . . . N ]. As there are no guarantees of feasbility with the
problem constraints for trajectories generated randomly, we gen-
erate feasible versions of these trajectories. For each randomized
trajectory xri a trajectory optimization is formulated with all of
the constraints (dynamics, task, etc) as the original optimization
above, but using a cost function penalizing the distance of the
resulting feasible trajectory xr,fi from the original xri . Our initial
set of suboptimal trajectories is then X− = xr,fi , i ∈ [1 . . . N ]
Given a set of suboptimal trajectories X−, we find cost function
weights wc consistent with the optimality of the demonstrated
trajectory x∗ by solving a constraint satisfaction problem,

wcT · φ(x∗) < wcT · φ(x−),∀x− ∈ X−&||wc||2 = 1. (1)

The 2-norm of the weights is constrained to 1 to avoid the
trivial solution of wc = 0. As multiple w may satisfy these
constraints, we also minimize the 3-norm of the weight vector
||w||3, encouraging use of all possible weights. While potentially
this procedure could result in the optimal cost weight w∗,
we found it difficult to produce trajectories with, for example,
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Fig. 1. Left: example optimal trajectories arising from different choices for weight costs. Right: an overview of our approach. Trajectory optimization is used
to generate an optimal trajectory with chosen weights. The inverse optimal control algorithm then generates random trajectories based on the demonstration and
optimizes these trajectories to ensure that they are consistent with the constraints. A weight optimization finds a set of weights consistent with relative optimality of
the demonstrated trajectory. The weights are then used to generate a new trajectory, which is added to the set of suboptimal states. The process then repeats until the
trajectory matches the demonstration.

smoother COP trajectories than the demonstration, due to our
method of generating suboptimal trajectories through the use of
added noise. This resulted in wc which were independent of the
COP and foot acceleration costs. To address this, we generate an
additioanl suboptimal trajectory, by using the candidate weights
wc to perform a full trajectory optimization outlined in section
II-A. This yields a new candidate trajectory xc. If this trajectory
is sufficiently close to the demonstrated trajectory x∗, then
wc are determined to be consistent with the optimality of the
demonstration. Otherwise, xc is added to X− and the constraint
satisfaction problem (Equation 1) is solved again for a new wc,
and this process iteratively repeats.

III. RESULTS

Optimal trajectories are found for the given task with two sets
of optimal weights, one that achieves a foot placement close to
the desired, one that more heavily penalizes foot acceleration
(Figure 1, left). The inverse optimal control procedure converges
to the actual weights after about 20 iterations (Figure 2).
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Fig. 2. The optimal weights during the iterative IOC

IV. DISCUSSION

We have shown an example of inverse optimal control infering
cost weights for a model of walking which, while simple,
includes important features such as contact switching and center
of pressure constraints. We wish to extend our methodology to
infer cost weights based on human motion when the full set
of potential cost features is unknown, and when some proposed
cost features may not in fact influence the subject’s behavior. We
therefore will investigate the performance of our procedure in the
presense of distractor features, where we consider features in our
inverse optimal control that are not considered in the forward
optimal control, as well as missing features where insufficient
cost components are proposed to reproduce the demonstrated
Behavior. We will also extend this approach using a more
complete model of locomotion, including joint level dynamics
as opposed to lumped mass dynamics. In addition, human data
may afford the collection of many near optimal trajectories (e.g.
from treadmill walking), which could potentially be incorporated
as multiple optimal demonstrations. Alternatively, they could be
interpreted as each slightly suboptimal and therefore ease the
requirement of suboptimal trajectory generation in our current
formulation.
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